
EECS 149/249A - 2018
Bike.ai - Adaptive Smart Bike

Bernard Chen, Arjun Mishra, Michael Duong

Objectives
● Prevent bike accidents due to sudden braking
● Alert bikers to moving objects in their blind spots
● Allow bikers to more easily signal turning
● Provide bikers access and customization of their bike

The diagram is our bike with
the main sensors we are
using for each subsystem.
The BLE buttons are a
non-intrusive way to signal
turns, the accelerometer is
used to detect braking
without physical hardware,
and the ultrasonic ranger is
used to check “blind spots.”

BLE-based Turn Signalling
Uses nRF SDK to scan, connect, discover and communicate
with wireless buttons. Additional features include
auto-cancel after a successful turn and timeout.

State Machines and Architecture Diagram

Automatically Detecting Braking
We propose the following methods for online outlier
detection. We propose IQR based outlier detection,
IQR-residual based outlier detection, and variance based
detection.

Plot of IQR based
outlier detection, which
utilizes 25% percentile
-alpha(hyperparameter)
*IQR and 75% percentile
+ alpha*IQR

Very similar to the
algorithm listed above
but is instead based off
of the residuals as
opposed to the
absolute values of the
acceleration readings

Automatic Proximity Sensing
Using two ultrasonic rangers, we can detect
how far away objects are in a rider’s blind spots.
If the object is within a configurable threshold
distance, a warning LED will turn on.

There is one ultrasonic ranger per side that corresponds to an LED. If an object
is detected on the left side, the left LED on the handlebar will light up (as shown
in the figure), and the same for the right side. Although the sensor can detect
up to 5 meters, we limit our software to only 2 meters because detecting
objects at a farther distance will cause our main loop thread to interrupt for too
long, and 2 meters is a sufficient distance to say something is “close.”

iPhone BLE interface for
customization
In order to provide the rider the ability to
customize their interaction with the smart bike,
we provide togglable settings through an
iPhone app.

The iPhone app interface to choose some options for the smart
bike. The app communicates with the Buckler through BLE and
can control settings such as LED colors, brake detection
algorithm to use, and threshold distance for the proximity
sensor.

2019

All BLE code written inspired by examples
from nRF SDK. Using scanning module and
DB Discovery as well as calls to the
SoftDevice API.

Each sub-component of our system is modeled by a state machine,
and we combine them into one hierarchical state machine.

Braking: Input from accelerometer and output to LED. Switches states
between LED off and LED on.
Turn signals: Input from BLE buttons and output to LED. Keeps variable for
time. Switches between LED on and will transition to off when turn detected or
timeout occurs.
Proximity: Input from ultrasonic sensor and output to LED. Keeps variable for
time. The state machine goes through the process of switching to output,
sending a signal, switching to input to wait for the echo, and calculating the
distance.

We use third party iTAG BLE buttons as our peripherals. This allows for smaller form factor
but sacrifices customizability for peripheral firmware. A few options we tried:
Flic Buttons: Custom firmware on the button made it impossible to connect and interact.
nRF52 board as a button: Bulkier but customizable firmware from peripheral side.
iTAG button: Clean form factor, lacking notification CCCD, but able to interact with read/write

** A few brake test-rides were conducted and analyzed within Jupyter notebook for the
most reliable algorithm to detect braking. Test data came from 10 second to minute long
rides both on flat surfaces and downhill slopes.

Ultrasonic RangerBLE Buttons
Accelerometer
(on Buckler)

